Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(5): e1010760, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200393

RESUMO

Heterozygous variants in the glucocerebrosidase (GBA) gene are common and potent risk factors for Parkinson's disease (PD). GBA also causes the autosomal recessive lysosomal storage disorder (LSD), Gaucher disease, and emerging evidence from human genetics implicates many other LSD genes in PD susceptibility. We have systemically tested 86 conserved fly homologs of 37 human LSD genes for requirements in the aging adult Drosophila brain and for potential genetic interactions with neurodegeneration caused by α-synuclein (αSyn), which forms Lewy body pathology in PD. Our screen identifies 15 genetic enhancers of αSyn-induced progressive locomotor dysfunction, including knockdown of fly homologs of GBA and other LSD genes with independent support as PD susceptibility factors from human genetics (SCARB2, SMPD1, CTSD, GNPTAB, SLC17A5). For several genes, results from multiple alleles suggest dose-sensitivity and context-dependent pleiotropy in the presence or absence of αSyn. Homologs of two genes causing cholesterol storage disorders, Npc1a / NPC1 and Lip4 / LIPA, were independently confirmed as loss-of-function enhancers of αSyn-induced retinal degeneration. The enzymes encoded by several modifier genes are upregulated in αSyn transgenic flies, based on unbiased proteomics, revealing a possible, albeit ineffective, compensatory response. Overall, our results reinforce the important role of lysosomal genes in brain health and PD pathogenesis, and implicate several metabolic pathways, including cholesterol homeostasis, in αSyn-mediated neurotoxicity.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/patologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Envelhecimento/metabolismo
2.
Genomics ; 114(6): 110517, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306958

RESUMO

Aspergillus welwitschiae causes bole rot disease in sisal (Agave sisalana and related species) which affects the production of natural fibers in Brazil, the main worldwide producer of sisal fibers. This fungus is a saprotroph with a broad host range. Previous research established A. welwitschiae as the only causative agent of bole rot in the field, but little is known about the evolution of this species and its strains. In this work, we performed a comparative genomics analysis of 40 Aspergillus strains. We show the conflicting molecular identity of this species, with one sisal-infecting strain sharing its last common ancestor with Aspergillus niger, having diverged only 833 thousand years ago. Furthermore, our analysis of positive selection reveals sites under selection in genes coding for siderophore transporters, Sodium­calcium exchangers, and Phosphatidylethanolamine-binding proteins (PEBPs). Herein, we discuss the possible impacts of these gene functions on the pathogenicity in sisal.


Assuntos
Agave , Agave/genética , Brasil , Aspergillus/genética
3.
Front Microbiol ; 12: 787283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925295

RESUMO

Fungi comprise a great diversity of species with distinct ecological functions and lifestyles. Similar to other eukaryotes, fungi rely on interactions with prokaryotes and one of the most important symbiotic events was the acquisition of mitochondria. Mitochondria are organelles found in eukaryotic cells whose main function is to generate energy through aerobic respiration. Mitogenomes (mtDNAs) are double-stranded circular or linear DNA from mitochondria that may contain core genes and accessory elements that can be replicated, transcribed, and independently translated from the nuclear genome. Despite their importance, investigative studies on the diversity of fungal mitogenomes are scarce. Herein, we have evaluated 788 curated fungal mitogenomes available at NCBI database to assess discrepancies and similarities among them and to better understand the mechanisms involved in fungal mtDNAs variability. From a total of 12 fungal phyla, four do not have any representative with available mitogenomes, which highlights the underrepresentation of some groups in the current available data. We selected representative and non-redundant mitogenomes based on the threshold of 90% similarity, eliminating 81 mtDNAs. Comparative analyses revealed considerable size variability of mtDNAs with a difference of up to 260 kb in length. Furthermore, variation in mitogenome length and genomic composition are generally related to the number and length of accessory elements (introns, HEGs, and uORFs). We identified an overall average of 8.0 (0-39) introns, 8.0 (0-100) HEGs, and 8.2 (0-102) uORFs per genome, with high variation among phyla. Even though the length of the core protein-coding genes is considerably conserved, approximately 36.3% of the mitogenomes evaluated have at least one of the 14 core coding genes absent. Also, our results revealed that there is not even a single gene shared among all mitogenomes. Other unusual genes in mitogenomes were also detected in many mitogenomes, such as dpo and rpo, and displayed diverse evolutionary histories. Altogether, the results presented in this study suggest that fungal mitogenomes are diverse, contain accessory elements and are absent of a conserved gene that can be used for the taxonomic classification of the Kingdom Fungi.

4.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34815340

RESUMO

Common fragile sites (CFSs) are difficult-to-replicate genomic regions that form gaps and breaks on metaphase chromosomes under replication stress. They are hotspots for chromosomal instability in cancer. Repetitive sequences located at CFS loci are inefficiently copied by replicative DNA polymerase (Pol) delta. However, translesion synthesis Pol eta has been shown to efficiently polymerize CFS-associated repetitive sequences in vitro and facilitate CFS stability by a mechanism that is not fully understood. Here, by locus-specific, single-molecule replication analysis, we identified a crucial role for Pol eta (encoded by the gene POLH) in the in vivo replication of CFSs, even without exogenous stress. We find that Pol eta deficiency induces replication pausing, increases initiation events, and alters the direction of replication-fork progression at CFS-FRA16D in both lymphoblasts and fibroblasts. Furthermore, certain replication pause sites at CFS-FRA16D were associated with the presence of non-B DNA-forming motifs, implying that non-B DNA structures could increase replication hindrance in the absence of Pol eta. Further, in Pol eta-deficient fibroblasts, there was an increase in fork pausing at fibroblast-specific CFSs. Importantly, while not all pause sites were associated with non-B DNA structures, they were embedded within regions of increased genetic variation in the healthy human population, with mutational spectra consistent with Pol eta activity. From these findings, we propose that Pol eta replicating through CFSs may result in genetic variations found in the human population at these sites.


Assuntos
Sítios Frágeis do Cromossomo/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Linhagem Celular , Fragilidade Cromossômica/genética , Fragilidade Cromossômica/fisiologia , DNA/genética , Dano ao DNA/genética , DNA Polimerase III/metabolismo , Reparo do DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Variação Genética/genética , Instabilidade Genômica/genética , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo
5.
Mitochondrion ; 58: 1-13, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582235

RESUMO

The mitochondrion is an organelle found in eukaryote organisms, and it is vital for different cellular pathways. The mitochondrion has its own DNA molecule and, because its genetic content is relatively conserved, despite the variation of size and structure, mitogenome sequences have been widely used as a promising molecular biomarker for taxonomy and evolution in fungi. In this study, the mitogenomes of two fungal species of Agaricomycetes class, Phellinotus piptadeniae and Trametes villosa, were assembled and annotated for the first time. We used these newly sequenced mitogenomes for comparative analyses with other 55 mitogenomes of Agaricomycetes available in public databases. Mitochondrial DNA (mtDNA) size and content are highly variable and non-coding and intronic regions, homing endonucleases (HEGs), and unidentified ORFs (uORFs) significantly contribute to the total size of the mitogenome. Furthermore, accessory genes (most of them as HEGs) are shared between distantly related species, most likely as a consequence of horizontal gene transfer events. Conversely, uORFs are only shared between taxonomically related species, most probably as a result of vertical evolutionary inheritance. Additionally, codon usage varies among mitogenomes and the GC content of mitochondrial features may be used to distinguish coding from non-coding sequences. Our results also indicated that transposition events of mitochondrial genes to the nuclear genome are not common. Despite the variation of size and content of the mitogenomes, mitochondrial genes seemed to be reliable molecular markers in our time-divergence analysis, even though the nucleotide substitution rates of mitochondrial and nuclear genomes of fungi are quite different. We also showed that many events of mitochondrial gene shuffling probably happened amongst the Agaricomycetes during evolution, which created differences in the gene order among species, even those of the same genus. Altogether, our study revealed new information regarding evolutionary dynamics in Agaricomycetes.


Assuntos
Basidiomycota/genética , Genes Fúngicos , Genoma Mitocondrial , Polyporaceae/genética , Códon , DNA Mitocondrial/genética , Íntrons , Fases de Leitura Aberta
6.
Nucleic Acids Res ; 49(1): 221-243, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33300026

RESUMO

Human genome stability requires efficient repair of oxidized bases, which is initiated via damage recognition and excision by NEIL1 and other base excision repair (BER) pathway DNA glycosylases (DGs). However, the biological mechanisms underlying detection of damaged bases among the million-fold excess of undamaged bases remain enigmatic. Indeed, mutation rates vary greatly within individual genomes, and lesion recognition by purified DGs in the chromatin context is inefficient. Employing super-resolution microscopy and co-immunoprecipitation assays, we find that acetylated NEIL1 (AcNEIL1), but not its non-acetylated form, is predominantly localized in the nucleus in association with epigenetic marks of uncondensed chromatin. Furthermore, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) revealed non-random AcNEIL1 binding near transcription start sites of weakly transcribed genes and along highly transcribed chromatin domains. Bioinformatic analyses revealed a striking correspondence between AcNEIL1 occupancy along the genome and mutation rates, with AcNEIL1-occupied sites exhibiting fewer mutations compared to AcNEIL1-free domains, both in cancer genomes and in population variation. Intriguingly, from the evolutionarily conserved unstructured domain that targets NEIL1 to open chromatin, its damage surveillance of highly oxidation-susceptible sites to preserve essential gene function and to limit instability and cancer likely originated ∼500 million years ago during the buildup of free atmospheric oxygen.


Assuntos
Cromatina/fisiologia , DNA Glicosilases/metabolismo , Reparo do DNA , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/ultraestrutura , DNA Glicosilases/química , DNA Glicosilases/fisiologia , Reparo do DNA/genética , Conjuntos de Dados como Assunto , Evolução Molecular , Genes de Helmintos , Genes Homeobox , Células HEK293 , Proteínas de Helminto/genética , Humanos , Invertebrados/genética , Invertebrados/metabolismo , Lisina/química , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/mortalidade , Oxirredução , Proteoma , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sítio de Iniciação de Transcrição , Vertebrados/genética , Vertebrados/metabolismo
7.
Front Microbiol ; 11: 765, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411111

RESUMO

The order Hypocreales (Ascomycota) is composed of ubiquitous and ecologically diverse fungi such as saprobes, biotrophs, and pathogens. Despite their phylogenetic relationship, these species exhibit high variability in biomolecules production, lifestyle, and fitness. The mitochondria play an important role in the fungal biology, providing energy to the cells and regulating diverse processes, such as immune response. In spite of its importance, the mechanisms that shape fungal mitogenomes are still poorly understood. Herein, we investigated the variability and evolution of mitogenomes and its relationship with the divergence time using the order Hypocreales as a study model. We sequenced and annotated for the first time Trichoderma harzianum mitochondrial genome (mtDNA), which was compared to other 34 mtDNAs species that were publicly available. Comparative analysis revealed a substantial structural and size variation on non-coding mtDNA regions, despite the conservation of copy number, length, and structure of protein-coding elements. Interestingly, we observed a highly significant correlation between mitogenome length, and the number and size of non-coding sequences in mitochondrial genome. Among the non-coding elements, group I and II introns and homing endonucleases genes (HEGs) were the main contributors to discrepancies in mitogenomes structure and length. Several intronic sequences displayed sequence similarity among species, and some of them are conserved even at gene position, and were present in the majority of mitogenomes, indicating its origin in a common ancestor. On the other hand, we also identified species-specific introns that advocate for the origin by different mechanisms. Investigation of mitochondrial gene transfer to the nuclear genome revealed that nuclear copies of the nad5 are the most frequent while atp8, atp9, and cox3 could not be identified in any of the nuclear genomes analyzed. Moreover, we also estimated the divergence time of each species and investigated its relationship with coding and non-coding elements as well as with the length of mitogenomes. Altogether, our results demonstrated that introns and HEGs are key elements on mitogenome shaping and its presence on fast-evolving mtDNAs could be mostly explained by its divergence time, although the intron sharing profile suggests the involvement of other mechanisms on the mitochondrial genome evolution, such as horizontal transference.

8.
PLoS One ; 13(11): e0207244, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30419071

RESUMO

Plasmodium vivax remains a global health problem and its ability to cause relapses and subpatent infections challenge control and elimination strategies. Even in low malaria transmission settings, such as the Amazon basin, where progress in malaria control has caused a remarkable reduction in case incidence, a recent increase in P. vivax transmission demonstrates the continued vulnerability of P.vivax-exposed populations. As part of a search for complementary approaches to P.vivax surveillance in areas in which adults are the majority of the exposed-population, here we evaluated the potential of serological markers covering a wide range of immunogenicity to estimate malaria transmission trends. For this, antibodies against leading P. vivax blood-stage vaccine candidates were assessed during a 9 year follow-up study among adults exposed to unstable malaria transmission in the Amazon rainforest. Circulating antibody levels against immunogenic P. vivax proteins, such as the Apical Membrane Antigen-1, were a sensitive measure of recent P. vivax exposure, while antibodies against less immunogenic proteins were indicative of naturally-acquired immunity, including the novel engineered Duffy binding protein II immunogen (DEKnull-2). Our results suggest that the robustness of serology to estimate trends in P.vivax malaria transmission will depend on the immunological background of the study population, and that for adult populations exposed to unstable P.vivax malaria transmission, the local heterogeneity of antibody responses should be considered when considering use of serological surveillance.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Vivax/imunologia , Malária Vivax/transmissão , Plasmodium vivax/imunologia , Adulto , Biomarcadores/sangue , Brasil , Estudos de Coortes , Estudos Transversais , Feminino , Seguimentos , Humanos , Malária Vivax/sangue , Masculino , Pessoa de Meia-Idade , Floresta Úmida , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...